What does your child do when they are stuck at school?

Hands Up

Do you remember when you were stuck at school and you didn’t know what to do next? What did you do? It seems such a long time ago for me and there is something telling me that I would put my hand up. The point is that I can’t actually remember doing that. I think that in reality I would just write anything. Anything was better than nothing.

So what does your child do when they are stuck at school?

Have you ever asked them? If you have then do they actually tell you what they do?

The point that I am making is that being stuck affects different people in different ways. Some people will not handle it well, whereas some may see it as part of the learning process. Those who see it as part of the learning process may even quote ‘neural pathways’. I would guess that most children do not know about this or understand what it is. This is another area for discussion and is digressing from the point that I wish to discuss.

The following is based on my experience of seeing when children are stuck and talking to them about it. My experience is based around the subject that I teach – mathematics. I am very lucky to be able to teach mathematics and for children to openly express how they feel about the subject and what they do when they are stuck.

Some children will put their hand up in class. The reasons for this may be to answer a question, to ask a question or to ask for help. Some children will not under any circumstances put their hand up in class. Reasons can be that they don’t want the attention, classmates may mimic or make fun of them or they just don’t want to advertise to the whole class that they cannot do the work.

For many children putting their hand up in class is a clear indication that they are stupid and that they cannot understand the work. When I have been teaching I have got to know my pupils and I know who will not ask for help so I would always ask how they were doing with the work and I would look at their books. There are of course time constraints on how much help I could give to individuals but I would do my best.

I have actually met pupils who will not put their hand up in an exam hall even when it is only for a pencil because they think that they will be seen by others and labelled as stupid. This did really shock me!

Does your child ask a friend for help? Pupils told me that they would rather ask a friend for help than a teacher. This is actually a positive step and can benefit both pupils.

Will your child go to see their teacher for help in their own time such as after school? Teachers are under increasing pressure and may not be available because of meetings or clubs.

Some children will ask their parents for help, but my experience of this is that it is quite a rare thing to happen. I remember my father trying to help me with long division and I remember him becoming very irritated with me and angry that I didn’t understand what he was doing.

Another point to mention is the child who is so good at maths and gets the top grades. Imagine this child when they actually find something that they cannot do. They are not used to being stuck and they will adopt a coping strategy. How many times have I heard, “The work is too easy. I can’t be bothered.” Very able children are good at disguising when they have difficulties.

Ok, so I have mentioned a few possibilities for what your child could do when they are stuck. The bottom line is, “Do they get unstuck?” This is all about understanding and if you read a previous blog of mine I mention Instrumental and Relational Understanding. What happens if your child does not get the understanding that is needed? How do you know? Do you wait for test results? What can you do to help? The most common opinion that I have heard from parents is that maths is so different these days and not how it was when I was at school.

Many parents are turning to tutors for help. The advantage is that when I tutor a child I can find out where the gaps are in understanding and help them. Often a lack of understanding stems from confidence and my aim is to build this up. I will adopt a ‘can do’ attitude through successes. Another reason for a lack of understanding could be a loss of concentration in class. This could be because of a short attention span, thinking about what to have for lunch or any of the multitude of emotional reasons. Absence is also a reason for a lack of understanding because vital work may have been missed.

My job as a tutor is forensic. I find topics that need to be improved on. Sometimes it is necessary to go right back to the beginning because that is where to problem could start from.

If you would like to benefit from my online maths tutoring then please do contact me. You have everything to gain.

How to develop maths resources that challenge students to think

This blog originally appeared via EdComs Teachers.

How to develop maths resources that challenge students to think

By Guest blogger: Gordon Brough

Thursday October 19, 2017

When I first started out as a teacher, I always made my own resources and that’s a habit I have continued throughout my teaching career.

From 1990 onwards, I worked full-time as a maths teacher in comprehensive schools around the country. My roles have included maths teacher, Head of Mathematics and Assistant Head, with experience of schools in Essex, Havering, Knowsley, Liverpool and Thurrock. I have always managed to improve results in maths at each of these schools, often achieving the best ever results in that school’s history.

Nowadays I author maths materials and deliver training courses for teachers nationally. I try to apply all of that experience when developing new resources, particularly focusing on how maths can do more to challenge students.

Since I started teaching, my approach to developing resources has changed quite a bit! In the early days my worksheets were produced using a spirit duplicating machine, also known as a Banda machine. The technology we have now is incredible, and much better for producing good-looking worksheets. Of course, that experience has also helped to improve the quality of my resources over time.

I have noticed that some maths teachers will make the work difficult by using larger numbers or decimals when producing worksheets. I used to do that years ago, but I have progressed to focus more on the promotion of thinking skills.

This isn’t necessarily an easy task – not least because some students do not want to think! They may want to simply get the correct answer and then move on. But the educational benefit of that approach can be limited.

Teaching with a purpose

I believe maths teachers must make an important decision about the resources they are going to produce. Please pause and ask yourself: What is the aim of this resource? Is it to enable learning, teach a topic or practice a technique? Every resource that you produce needs a strong answer to that age-old conundrum: Why?

There is also a question about familiarity and repetition when producing resources. Most teachers will use worksheets to supplement textbooks, which is good because pupils will quickly get fed up with one particular resource. However, you need to make sure there’s variety to your own supplementary materials. In the same way you can ruin your favourite meal by eating it every day, teachers can face falling engagement if they’re over-reliant on a single textbook, resource or worksheet.

The same can be said about work that is repetitious in general. This can be a common objection when teaching maths, so it’s important to ensure variety and relatability of your resources. That objection is also one of the reasons why I have shifted towards promoting thinking skills.

Teach pupils to think beyond the right answer

Here are some examples I use when training teachers about how to diversify their maths problems.

When I’m writing a resource about time, I use a clock face and ask for the time shown. The clock face can be used to challenge students’ ability in different ways.

  • First the clock face has just four numbers: 3, 6, 9, 12. This would be a standard setup.
  • The next clock face does not have any numerals, or it’s reflected in a mirror or a shop window.
  • Can students respond to the same challenge, but without the additional information?
  • For example, can they tell me the correct time when the minute hand is missing, and only the hour hand is showing the time?

Often children are asked questions such as 4 x 3 = ? Or they may be asked to find the factors of 12. However, from a different angle we can ask:

  • Using the numbers 1 to 4 only once, find the largest possible answer to oo x o
  • Find how many numbers under 30 there are with exactly six factors.

This process can be applied to lots of different scenarios. By removing information, we’re illustrating how you can arrive at the correct answer using different methods. These are problem-solving skills that may seem simple, but they are vital life skills for a range of subjects and careers.

By re-focusing on the process you go through to get the correct answer, rather than the correct answer in isolation, I believe we can better support students in developing vital problem solving-skills.


Gordon Brough is a business coach, trainer, entrepreneur and maths teacher. With 25 years of teaching experience, he has trained PGCE students, been a tutor for The Open University and gained degrees in Mathematics, Mathematics & Economics and Education Leadership & Management.

Follow Gordon on Twitter @gordon_brough

This blog originally appeared via EdComs Teachers.

Instrumental and Relational Understanding

One week ago I gave a presentation at the maths conference in Sheffield. 400 maths teachers signed up for the event and over 90 of these were in my presentation. There were of course other presentations on at the same time.

The focus for my presentation was Instrumental Understanding and Relational Understanding by Richard Skemp. In order to cover what I wanted I only discussed his article from 1976 and my aim was to provoke thinking amongst my audience. This was a time for reflection on how we teach with reference to an article from 41 years ago.

Instrumental Understanding can be thought of as ‘Rules without reasons’. An example of this is when a quick fix is given so that the pupil is able to get the correct answers. The problem with this is that they don’t always know why it works and they can’t apply the rule to different situations. I gave examples involving multiplying two digits by two digits, the addition of fractions and solving equations.

When I was at school I remember that I was taught a whole bunch of rules but I didn’t know why they worked and I couldn’t apply them if the questions were slightly different. Yes, I was the product of Instumental teaching and I admitted that I have used this in my teaching. I have used it to get results when time is short, especially when an exam is imminent.

I gave a meaning to ‘Relational Understanding’ as ‘Knowing what to do and why’. My examples of multiplication, adding fractions and solving equations were taken right back to basics and I offered ‘concrete ways of teaching these. I used Dienes Blocks, Cuisenaire Rods and Algebra Tiles to illustrate relational understanding. In an ideal world this is great but do the pressures of having to get through the curriculum stop us doing this?

The objective of the presentation was to get the teachers to think about what they are doing and the learning that is taking place in their classrooms. I had quite a few conversations with teachers afterwards and I believe that the objective was achieved.